Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Environ Sci Technol ; 58(13): 5932-5941, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38502530

RESUMO

Organoiodine compounds (OICs) are the dominant iodine species in groundwater systems. However, molecular mechanisms underlying the geochemical formation of geogenic OICs-contaminated groundwater remain unclear. Based upon multitarget field monitoring in combination with ultrahigh-resolution molecular characterization of organic components for alluvial-lacustrine aquifers, we identified a total of 939 OICs in groundwater under reducing and circumneutral pH conditions. In comparison to those in water-soluble organic matter (WSOM) in sediments, the OICs in dissolved organic matter (DOM) in groundwater typically contain fewer polycyclic aromatics and polyphenol compounds but more highly unsaturated compounds. Consequently, there were two major sources of geogenic OICs in groundwater: the migration of the OICs from aquifer sediments and abiotic reduction of iodate coupled with DOM iodination under reducing conditions. DOM iodination occurs primarily through the incorporation of reactive iodine that is generated by iodate reduction into highly unsaturated compounds, preferably containing hydrophilic functional groups as binding sites. It leads to elevation of the concentration of the OICs up to 183 µg/L in groundwater. This research provides new insights into the constraints of DOM molecular composition on the mobilization and enrichment of OICs in alluvial-lacustrine aquifers and thus improves our understanding of the genesis of geogenic iodine-contaminated groundwater systems.


Assuntos
Água Subterrânea , Iodo , Poluentes Químicos da Água , Iodatos , Poluentes Químicos da Água/análise , Água Subterrânea/química , Água , Monitoramento Ambiental
2.
Food Chem ; 442: 138401, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219570

RESUMO

Molecular docking and activity evaluation screened the dipeptide module GP with low xanthine oxidase (XOD) inhibitory activity and modules KE and KN with high activity, and identified them as low- and high-contribution modules, respectively. We hypothesized the substitution of low-contribution modules in peptides with high contributions would boost their XOD inhibitory activity. In the XOD inhibitory peptide GPAGPR, substitution of GP with both KE and KN led to enhanced affinity between the peptides and XOD. They also increased XOD inhibitory activity (26.4% and 10.3%) and decreased cellular uric acid concentrations (28.0% and 10.4%). RNA sequencing indicated that these improvements were attributable to the inhibition of uric acid biosynthesis. In addition, module substitution increased the angiotensin-converting enzyme inhibitory activity of GILRP and GAAGGAF by 84.8% and 76.5%. This study revealed that module substitution is a feasible strategy to boost peptide activity, and provided information for the optimization of hydrolysate preparation conditions.


Assuntos
Peptidil Dipeptidase A , Xantina Oxidase , Simulação de Acoplamento Molecular , Ácido Úrico , Peptídeos/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
3.
Theriogenology ; 215: 58-66, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38008049

RESUMO

In vitro maturation (IVM) methods for porcine oocytes are still deficient in achieving full developmental capacity, as the currently available oocyte in vitro culture systems still have limitations. In vitro embryo production must also improve the porcine oocyte IVM system to acquire oocytes with good developmental potential. Herein, we tested a three-dimensional (3D) glass scaffold culture system for porcine oocyte maturation. After 42 h, we matured porcine cumulus-oocyte complexes (COCs) on either two-dimensional glass dishes (2D-B), two-dimensional microdrops (2D-W), or 3D glass scaffolds. The 3D glass scaffolds were tested for porcine oocyte maturation and embryonic development. Among these culture methods, the extended morphology of the 3D group maintained a 3D structure better than the 2D-B and 2D-W groups, which had flat COCs that grew close to the bottom of the culture vessel. The COCs of the 3D group had a higher cumulus expansion index and higher first polar body extrusion rate, cleavage rate, and blastocyst rate of parthenogenetic embryos than the 2D-B group. In the 3D group, the cumulus-expansion-related gene HAS2 and anti-apoptotic gene Bcl-2 were significantly upregulated (p < 0.05), while the pro-apoptotic gene Caspase3 was significantly downregulated (p < 0.05). The blastocysts of the 3D group had a higher relative expression of Bcl-2, Oct4, and Nanog than the other two groups (p < 0.05). The 3D group also had a more uniform distribution of mitochondrial membrane potential and mitochondria (p < 0.05), and its cytoplasmic active oxygen species content was much lower than that in the 2D-B group (p < 0.05). These results show that 3D glass scaffolds dramatically increased porcine oocyte maturation and embryonic development after parthenogenetic activation, providing a suitable culture model for porcine oocytes.


Assuntos
Desenvolvimento Embrionário , Oócitos , Gravidez , Feminino , Suínos , Animais , Oócitos/fisiologia , Técnicas de Maturação in Vitro de Oócitos/veterinária , Técnicas de Maturação in Vitro de Oócitos/métodos , Partenogênese , Blastocisto/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células do Cúmulo/fisiologia
4.
Minerva Anestesiol ; 90(3): 162-171, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37987990

RESUMO

BACKGROUND: Limited data exist regarding the use of the esketamine-propofol combination (esketofol) in pediatric surgery. This study aimed to investigate the effect of esketofol versus propofol alone on the perioperative characteristics of children undergoing minor surgery. METHODS: Eighty-four children aged two to six years were randomly assigned to either the propofol group or the esketofol group. Intraoperative outcomes included bispectral index, dosage of anesthetics, and extubation time. Postoperative outcomes comprised oropharyngeal airway usage, time to orientation, time to eye-opening, length of stay in the post-anesthesia care unit, the need for rescue opioids, pain rating using the Face, Legs, Activity, Cry, Consolability (FLACC) Scale, Pediatric Anesthesia Emergence Delirium Score, nausea and vomiting, and psychotomimetic symptoms. The FLACC pain score was the primary outcome, and the remaining parameters were considered secondary outcomes. RESULTS: The FLACC Score (2 [1, 3.3] vs. 4 [3, 5.3], P<0.001) and frequency of rescue opioids (14.3% vs. 33.3%, P=0.040) were significantly lower, while Bispectral Index (BIS) was higher (P<0.001) in the esketofol group compared with the propofol group. Moreover, the time to orientation and length of stay in the post-anesthesia care unit (PACU) were significantly longer in the esketofol group compared with the propofol group (P=0.029 and P=0.025, respectively). The other outcomes were similar between the two groups. CONCLUSIONS: Esketofol reduces postoperative pain and the need for rescue opioids, but it extends recovery time in the PACU and increases BIS without affecting other outcomes.


Assuntos
Ketamina , Propofol , Humanos , Criança , Anestésicos Intravenosos , Estudos Prospectivos , Dor Pós-Operatória , Analgésicos Opioides
5.
Water Res ; 250: 121025, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38113593

RESUMO

Elevated concentration levels of geogenic ammonium in groundwater arise from the mineralization of nitrogen-containing natural organic matter in various geological settings worldwide, especially in alluvial-lacustrine and coastal environments. However, the difference in enrichment mechanisms of geogenic ammonium between these two types of aquifers remains poorly understood. To address this knowledge gap, we investigated two representative aquifer systems in central Yangtze (Dongting Lake Plain, DTP) and southern China (Pearl River Delta, PRD) with contrasting geogenic ammonium contents. The use of optical and molecular characterization of DOM combined with hydrochemistry and stable carbon isotopes has revealed differences in DOM between the two types of aquifer systems and revealed contrasting controls of DOM on ammonium enrichment. The results indicated higher humification and degradation of DOM in DTP groundwater, characterized by abundant highly unsaturated compounds. The degradation of DOM and nitrogen-containing DOM was dominated by highly unsaturated compounds and CHO+N molecular formulas in highly unsaturated compounds, respectively. In contrast, the DOM in PRD groundwater was more biogenic, less degraded, and contained more aliphatic compounds in addition to highly unsaturated compounds. The degradation of DOM and nitrogen-containing DOM was dominated by aliphatic compounds and polyphenols and CHO+N molecular formulas in highly unsaturated compounds and polyphenols, respectively. As DOM degraded, the ammonium production efficiency of DOM decreased, contributing to lower ammonium concentrations in DTP groundwater. In addition, the CHO+N(SP) molecular formulas were mainly of microbial-derived and gradually accumulated with DOM degradation. In this study, we conducted the first comprehensive investigation into the patterns of groundwater ammonium enrichment based on DOM differences in various geological settings.


Assuntos
Compostos de Amônio , Água Subterrânea , Matéria Orgânica Dissolvida , Água Subterrânea/química , Rios/química , Nitrogênio
6.
Environ Sci Technol ; 58(1): 695-703, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38141021

RESUMO

The fate of antimony (Sb) is strongly affected by adsorption, yet Sb isotope fractionation and the associated mechanism have not been widely reported. Here we experimentally investigated the process of Sb(V) adsorption on iron (oxyhydr)oxides and the associated isotope effects. Sb isotope fractionation occurs during adsorption (Δ123Sbsolution-mineral = 1.20 ± 0.02‰ for ferrihydrite and 2.35 ± 0.04‰ for goethite). Extended X-ray absorption fine structure (EXAFS) analysis shows that Sb(V) adsorption on iron (oxyhydr)oxides occurs via inner-sphere surface complexation, including mononuclear bidentate edge-sharing (2E) and binuclear bidentate corner-sharing (2C) complexes. A longer atom distance of Sb-Fe in ferrihydrite leads to less Sb isotope fractionation during Sb adsorption than in goethite. The Gibbs free energy and Mayer bond order were calculated based on density functional theory (DFT) and suggested that the strength of the bonding environment can be summarized as Sb(OH)6- > 2E > 2C. In turn, the bonding environment indicates the mechanism of Sb isotope fractionation during the process. This study reveals that Sb isotope fractionation occurs during Sb(V) adsorption onto iron (oxyhydr)oxides, providing a basis for the future study of Sb isotopes and further understanding of the fractionation mechanism.


Assuntos
Ferro , Óxidos , Ferro/química , Antimônio/química , Adsorção , Compostos Férricos/química , Isótopos
7.
mBio ; 15(2): e0275223, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38126747

RESUMO

Gut microbiota dysbiosis is causally related to inflammatory bowel disease (IBD), and increased levels of the gut metabolite ammonia have been proposed to contribute to IBD development. In this study, we aimed to clarify the anti-colitis mechanism of gallic acid (GA) based on its ability to trap the deleterious metabolite ammonia and improve gut microbiota. Aminated product was detected in the fecal samples of mice after oral gavage of gallic acid (GA) and identified as 4-amino-substituted gallic acid (4-NH2-GA), thus confirming the ability of GA to trap ammonia in vivo. Then, we compared the beneficial effects of GA and 4-NH2-GA on dextran sulfate sodium (DSS)-induced colitis mouse and found that both compounds managed to alleviate colitis phenotypes, indicating ammonia trapping had no adverse effect on the original anti-colitis activity of GA. In addition, both GA and 4-NH2-GA improved the gut microbiota dysbiosis induced by DSS, and fecal microbiota transplantation was subsequently performed, which further revealed that the gut microbiota mediated the anti-colitis activity of both GA and 4-NH2-GA. In summary, this study clarified that GA alleviated colitis by targeting both the symptoms and root causes: it directly reduced the deleterious metabolite ammonia by forming aminated metabolites without compromising the original anti-colitis activity, and it also improved gut microbiota dysbiosis, which in turn contributed to the alleviation of colitis. Since the GA structure is presented in various polyphenols as a common building block, the novel anti-colitis mechanism obtained from GA may also apply to other complex polyphenols.IMPORTANCEThe dysbiosis of the gut microbiota and its metabolism directly cause the emergence of IBD. In this study, we aimed to clarify the anti-colitis mechanism of GA in sight of gut microbiota and its metabolite ammonia. We discovered that GA directly captured and reduced the harmful metabolite ammonia in vivo to produce the aminated metabolite 4-NH2-GA, while the amination of GA had no adverse effect on its initial anti-colitis activity. In addition, both GA and its aminated metabolite improved the gut microbiota in colitis mice, and the modified gut microbiota, in turn, helped to relieve colitis. Since the GA structure is presented in diverse polyphenols as a common building block, the novel anti-colitis mechanism targeting the symptoms and root causes might also apply to other complex polyphenols.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Camundongos , Animais , Amônia , Disbiose , Ácido Gálico/efeitos adversos , Colite/induzido quimicamente , Aminoácidos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo
8.
Sci Total Environ ; 894: 164941, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37343891

RESUMO

Iron (hydr)oxides are effective sorbents of arsenic that undergo reductive dissolution when exposed to dissolved sulfide, which significantly impacts the movement and repartition of arsenic in groundwater. This study investigated the sulfidation of As-bearing ferrihydrite and its consequences on arsenic repartitioning as well as formation and transformation of secondary minerals induced by sulfide in batch experiments. The sulfidation of As(III) and As(V) adsorbed on ferrihydrite shows very different results. In the As(V) system, sulfidation resulted in the production of significant amounts of elemental sulfur (S0) and Fe2+, and Fe2+ and sulfide combine to form mackinawite. Subsequently, Fe2+ adsorbed and catalyzed the conversion of residual ferrihydrite to lepidocrocite. However, in the As(III) system, As(III) was protonated in the presence of sulfide to produce thioarsenate, which accounted for 87.9 % of the total aqueous arsenic concentration. The formation of thioarsenate also consumed the S0 produced by the sulfidation, resulting in no detectable S0 during solid phase characterization. The adsorption of thioarsenate on iron minerals notably affected the surface charge density of ferrihydrite, hindering the further formation of secondary minerals. Studies on the influence of thiolation on As-Fe-S system are of great significance for understanding the migration and redistribution of arsenic in groundwater systems under sulfur-rich conditions.

9.
J Hazard Mater ; 451: 131115, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36871468

RESUMO

The heterogeneous distribution of As in sediments is governed by the abundance and type of SOM, which is closely associated with the depositional environment. However, few studies have revealed the effect of depositional environment (e.g., paleotemperature) on As sequestration and transport in sediments from the perspective of the molecular characteristics of sedimentary organic matter (SOM). In this study, we characterized the optical and molecular characteristics of SOM coupled with organic geochemical signatures to illustrate in detail the mechanisms of sedimentary As burial under different paleotemperatures. We identified that alternating paleotemperature changes result in the fluctuation of H-rich and H-poor organic matter in sediments. Further, we found aliphatic and saturated compounds with higher nominal oxidation state of carbon (NOSC) values predominate under high-paleotemperature (HT) conditions, while polycyclic aromatics and polyphenols with lower NOSC values accumulate under low-paleotemperature (LT) conditions. Under LT conditions, thermodynamically favorable organic compounds (higher NOSC values) are preferentially degraded by microorganisms to provide sufficient energy to sustain sulfate reduction, favoring sedimentary As sequestration. Under HT conditions, the energy gained from the decomposition of low NOSC value organic compounds approaches the energy required to sustain dissimilatory Fe reduction, leading to sedimentary As release into groundwater. This study provides molecular-scale evidence of SOM that indicates LT depositional environments favor sedimentary As burial and accumulation.

10.
Rev Sci Instrum ; 94(2): 024704, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859002

RESUMO

Several deep learning partial discharge (PD) diagnostic approaches have been developed in recent years to guarantee the security and stability of gas-insulated switchgear (GIS). The centralized training method requires multiple clients to jointly obtain as much data as possible to train the model to achieve excellent performance, which is impractical due to conflicts of interest and privacy protection. Furthermore, because of differences in the distribution of client data and the presence of a small sample, achieving high-precision and robust diagnosis for each client is an urgent problem. To that end, a novel personalized federated meta-learning (FML) is proposed in this paper to address the aforementioned issues. It develops reliable and personalized PD diagnosis models by collaborating with multiple clients and solves the problem of small sample diagnosis through scenario training under the premise of protecting data privacy. The experimental results show that the FML proposed can diagnose GIS PD with high precision and robustness for each client while maintaining privacy. The diagnostic accuracy of the FML proposed in this paper, especially for on-site unbalanced small sample clients, is 93.07%, which is significantly higher than that for other methods. It serves as a model for the collaborative development of an effective GIS PD diagnostic model.

11.
ISA Trans ; 134: 268-277, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36050144

RESUMO

Data-driven diagnosis methods have been systematically investigated for the diagnosis of gas-insulated switchgear (GIS) partial discharge (PD). However, because of the scarcity of samples on-site, an operational gap exists between the diagnostic methods and their actual application. To settle this issue, a novel metric-based meta-learning (MBML) method is proposed. First, a hybrid self-attention convolutional neural network is constructed for feature extraction and trained through supervised learning. Then, the episodic MBML is used to train other parts, and the metric classifier is employed for diagnosis. The proposed MBML exhibits an accuracy of 93.17% under 4-way 5-shot conditions, which is a significant improvement over traditional methods. When the number of support sets is small, the benefits of MBML are more prominent, providing a viable solution for the on-site diagnosis of PD in GISs.

12.
Phys Chem Chem Phys ; 25(1): 768-777, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36507901

RESUMO

Density functional theory (DFT) calculations are executed to investigate the effect of a potassium (K) promoter on the activity of the water gas shift reaction (WGSR) over an Ag(111) surface. It is found that the WGSR proceeds mainly through the OH(O)-assisted carboxy pathway in which H2O dehydrogenation is the rate-controlling step on both Ag(111) and K/Ag(111) surfaces. Energetic span model analysis shows that K addition can enhance the activity of the WGSR by reducing the apparent activation energy of the whole reaction since it can promote H2O dissociation and stabilize the adsorption of the reactants (CO and H2O). Importantly, the K adatom can stabilize the binding of all oxygenates by direct K-O bonding and the stabilizing effect of K on OH adsorption of the transition state (TS) plays a leading role in promoting H2O dissociation. Moreover, the K-O distance and K coverage are two key factors affecting H2O activation, that is, the shorter the K-O distance (2-3 Å) the more the K coverage (25%) contributes to the stronger promotion effect. For various metals catalyzing the WGSR, K promotes H2O dissociation on inert metals like Ag, Au and Cu better than those on reactive metals (Pd and Ni) since the more inert metal surfaces would weaken the K and O binding and accordingly strengthen the interaction between them, resulting in a higher promotion effect.

13.
Water Res ; 222: 118867, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35870391

RESUMO

Groundwater nitrogen contamination is becoming increasingly serious worldwide, and natural nitrogen attenuation processes such as anaerobic ammonium oxidation coupled to iron reduction ("Feammox") play an important role in mitigating contamination. Although there has been intensive study of Feammox in soils and sediments, still lacks research on this process in groundwater. This study makes effort to demonstrate the occurrence of Feammox in groundwater by combining information from Fe/N isotope composition, the quantitative polymerase chain reaction (qPCR) assay, and 16S rRNA gene sequencing. Poyang Lake Plain of Yangtze River in central China was selected as the case study area. The critical evidences that indicate Feammox in groundwater include favorable hydrogeochemical conditions of the alluvia-lacustrine aquifer systems, the simultaneous enrichment of 15N in ammonium and 56Fe, the relative high abundance of Acidimicrobiaceae bacterium A6, and the joint elevation of the abundance of the Feammox bacteria and the concentration of Fe(III). Redundancy analysis (RDA) indicated that Geothrix and Rhodobacter may participate directly or cooperatively in the Feammox process. Ammonium-oxidizing archaea (AOA) involved in ammonium-oxidizing or Feammox process may be stimulated by Fe(III) under a low oxygen concentration and weakly acidic condition. Anammox may be indirectly enhanced by products of the nitrogen transformation processes involving Feammox bacteria and AOA. Fe(III) concentration is an important environmental factor affecting the abundance of functional microorganisms related to nitrogen cycling and the composition of ammonium-oxidizing and iron-reducing microbes. Specific geological background (such as the widespread red soils) and anthropogenic input of ammonium, iron, and acidic substances may jointly promote Feammox in groundwater.


Assuntos
Compostos de Amônio , Água Subterrânea , Compostos de Amônio/química , Bactérias/genética , Ferro/química , Nitrogênio/análise , Oxirredução , RNA Ribossômico 16S , Solo/química
14.
Int J Mol Sci ; 23(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35743042

RESUMO

The clinical use of anticancer drugs necessitates new technologies for their safe, sensitive, and selective detection. In this article, lanthanide (Eu3+ and Tb3+)-loaded γ-cyclodextrin nano-aggregates (ECA and TCA) are reported, which sensitively detects the anticancer drug irinotecan by fluorescence intensity changes. Fluorescent lanthanide (Eu3+ and Tb3+) complexes exhibit high fluorescence intensity, narrow and distinct emission bands, long fluorescence lifetime, and insensitivity to photobleaching. However, these lanthanide (Eu3+ and Tb3+) complexes are essentially hydrophobic, toxic, and non-biocompatible. Lanthanide (Eu3+ and Tb3+) complexes were loaded into naturally hydrophilic γ-cyclodextrin to form fluorescent nano-aggregates. The biological nontoxicity and cytocompatibility of ECA and TCA fluorescent nanoparticles were demonstrated by cytotoxicity experiments. The ECA and TCA fluorescence nanosensors can detect irinotecan selectively and sensitively through the change of fluorescence intensity, with detection limits of 6.80 µM and 2.89 µM, respectively. ECA can safely detect irinotecan in the cellular environment, while TCA can detect irinotecan intracellularly and is suitable for cell labeling.


Assuntos
Antineoplásicos , Elementos da Série dos Lantanídeos , gama-Ciclodextrinas , Antineoplásicos/farmacologia , Irinotecano , Elementos da Série dos Lantanídeos/química
15.
Environ Sci Technol ; 56(9): 5542-5551, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35412804

RESUMO

Sulfidation can greatly improve the efficiency of utilization of reducing equivalents for contaminant removal; however, whether this method benefits Fenton-like reactions or not and the possible mechanism are not well understood. In this study, we revealed that surface sulfidation can greatly promote the heterogeneous Fenton activity of ß-FeOOH (Fe3S4@ß-FeOOH) by 40 times, in which not only the •OH formation was enhanced but also SO4•- as a new oxidation species was generated. Moreover, their contribution to metronidazole (MTZ) degradation was 52.5 and 37.1%, respectively. In comparison, almost no HO2•/O2•- was detected in the Fe3S4@ß-FeOOH/H2O2 system. These results were different from some previously reported Fenton counterparts. Based on the characterization and probe experiments, sulfur species, including S2-, S0, and Sn2-, as an electron donor and electron shuttle were responsible for efficient conversion of Fe(III) into Fe(II) other than via the Haber-Weiss mechanism, leading to excellent •OH generation via a Fenton-like mechanism. Most importantly, HSO5- can be generated from SO32- oxidized by •OH, and its scission into SO4•- was not dependent on the extra electric potential or Fe-O2-S(IV) intermediate. These findings provided new insight for utilizing sulfidation to improve the activity of iron-based Fenton catalysts.


Assuntos
Compostos Férricos , Peróxido de Hidrogênio , Ferro , Oxirredução , Sulfatos
16.
Sci Total Environ ; 814: 151930, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34843759

RESUMO

The biodegradation of organic matter triggers the reductive dissolution of iron oxides with the transformation among iodine species has been mostly accepted as the key iodine mobilization process in groundwater system. However, molecular characteristics of natural organic matter (NOM) and their interaction with iron oxides on geogenic iodine enrichment remain unclear. We used Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to characterize the molecular composition of both dissolved organic matter (DOM) in groundwater and water-soluble organic matter (WSOM) in aquifer sediments being depth-matched with groundwater from monitoring wells in typical iodine-affected aquifers within the central Yangtze River Basin. The results show that WSOM in high-iodine sediments contains more high molecular weight (HMW) organic compounds with higher aromaticity and nominal oxidation state of carbon (NOSC), including polycyclic aromatics, polyphenols and highly unsaturated compounds. These compounds are mostly positively associated with amorphous iron oxides (Feox1) in aquifer sediments. The association between iodine and WSOM is highly consistent with that between amorphous Feox1 and WSOM, but is contrary to that between crystalline iron oxides (Feox2) and WSOM. DOM in groundwater with higher iodine concentration contains more aliphatic compounds and less polyphenols. The complexation of HMW organic compounds of WSOM to iodine-bearing amorphous Feox1 plays an important role in iodine mobilization, which could inhibit the amorphous Feox1 transformation to crystalline Feox2. These observations indicate the biodegradation of HMW organic matter (polycyclic aromatics, polyphenols and highly unsaturated compounds) in WSOM fueling the reductive dissolution of amorphous Feox1 predominantly promotes the release of iodine from aquifer sediments into groundwater. This research provides new insights into the mobilization mechanisms of iodine in alluvial-lacustrine groundwater system controlled by the Fe-OM complexation at the molecular level.


Assuntos
Arsênio , Água Subterrânea , Iodo , Poluentes Químicos da Água , Arsênio/análise , Monitoramento Ambiental , Ferro , Óxidos , Rios , Poluentes Químicos da Água/análise
17.
Front Cardiovasc Med ; 8: 768947, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34859077

RESUMO

Aims: The inflammatory response and apoptosis are the major pathological features of myocardial ischemia/reperfusion injury (MI/RI). Maslinic acid (MA), a natural pentacyclic triterpene with various bioactivities, plays critical roles in the multiple cellular biological processes, but its protective effects on the pathophysiological processes of MI/RI have not been extensively investigated. Our study aimed to determine whether MA treatment alleviate ischemia/reperfusion (I/R)-induced myocardial inflammation and apoptosis both in vitro and in vivo, and further reveal the underlying mechanisms. Methods and results: An MI/RI rat model was successfully established by ligating the left anterior descending coronary artery and H9c2 cells were exposed to hypoxia/reoxygenation (H/R) to mimic I/R injury. In addition, prior to H/R stimulation or myocardial I/R operation, the H9c2 cells or rats were treated with varying concentrations of MA or vehicle for 24 h and two consecutive days, respectively. In this study, our results showed that MA could obviously increase the cell viability and decrease the cardiac enzymes release after H/R in vitro. MA could significantly improve the H/R-induced cardiomyocyte injury and I/R-induced myocardial injury in a dose-dependent manner. Moreover, MA suppressed the expression of inflammatory cytokines (tumor necrosis factor alpha [TNF-α, interleukin-1ß [IL-1ß and interleukin-6 [IL-6]) and the expressions of apoptosis-related proteins (cleaved caspase-3 and Bax) as well as increased the levels of anti-apoptotic protein Bcl-2 expression both in vitro and in vivo. Mechanistically, MA significantly inhibited nuclear translocation of nuclear factor-κB (NF-κB) p65 after H/R via regulating high mobility group box 1 (HMGB1)/toll-like receptor 4 (TLR4) axis. Conclusion: Taken together, MA treatment may alleviate MI/RI by suppressing both the inflammation and apoptosis in a dose-dependent manner, and the cardioprotective effect of MA may be partly attributable to the inactivation of HMGB1/TLR4/NF-κB pathway, which offers a new therapeutic strategy for MI/RI.

18.
BMC Psychiatry ; 21(1): 485, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34607584

RESUMO

BACKGROUND: The Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA) are the most commonly used scales to detect mild cognitive impairment (MCI) in population-based epidemiologic studies. However, their comparison on which is best suited to assess cognition is scarce in samples from multiple regions of China. METHODS: We conducted a cross-sectional analysis of 4923 adults aged ≥55 years from the Community-based Cohort Study on Nervous System Diseases. Objective cognition was assessed by Chinese versions of MMSE and MoCA, and total score and subscores of cognitive domains were calculated for each. Education-specific cutoffs of total score were used to diagnose MCI. Demographic and health-related characteristics were collected by questionnaires. Correlation and agreement for MCI between MMSE and MoCA were analyzed; group differences in cognition were evaluated; and multiple logistic regression model was used to clarify risk factors for MCI. RESULTS: The overall MCI prevalence was 28.6% for MMSE and 36.2% for MoCA. MMSE had good correlation with MoCA (Spearman correlation coefficient = 0.8374, p < 0.0001) and moderate agreement for detecting MCI with Kappa value of 0.5973 (p < 0.0001). Ceiling effect for MCI was less frequent using MoCA versus MMSE according to the distribution of total score. Percentage of relative standard deviation, the measure of inter-individual variance, for MoCA (26.9%) was greater than for MMSE (19.0%) overall (p < 0.0001). Increasing age (MMSE: OR = 2.073 for ≥75 years; MoCA: OR = 1.869 for≥75 years), female (OR = 1.280 for MMSE; OR = 1.163 for MoCA), living in county town (OR = 1.386 and 1.862 for MMSE and MoCA, respectively) or village (OR = 2.579 and 2.721 for MMSE and MoCA, respectively), smoking (OR = 1.373 and 1.288 for MMSE and MoCA, respectively), hypertension (MMSE: OR = 1.278; MoCA: OR = 1.208) and depression (MMSE: OR = 1.465; MoCA: OR = 1.350) were independently associated with greater likelihood of MCI compared to corresponding reference group in both scales (all p < 0.05). CONCLUSIONS: MoCA is a better measure of cognitive function due to lack of ceiling effect and with good detection of cognitive heterogeneity. MCI prevalence is higher using MoCA compared to MMSE. Both tools identify concordantly modifiable factors for MCI, which provide important evidence for establishing intervention measures.


Assuntos
Disfunção Cognitiva , Idoso , China/epidemiologia , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/epidemiologia , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Entrevista Psiquiátrica Padronizada , Testes de Estado Mental e Demência , Pessoa de Meia-Idade , Testes Neuropsicológicos
19.
J Pharmacol Sci ; 147(4): 305-314, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34663512

RESUMO

Pentagalloylglucose (PGG), a gallotannin polyphenolic compound, has been found to possess a host of beneficial pharmacologic activities, such as anti-inflammatory and antioxidative activities. We previously demonstrated that PGG is capable of binding to the cell membrane of renal mesangial cells, but the pharmacological effect of PGG on diabetic renal injury and the underlying mechanisms are still not yet clear. In this study, the effects of PGG on Nrf2/HO-1 and JAK2/STAT3 signaling were explored in AGE-stimulated mesangial cells. Furthermore, the Nrf2 transcriptional inhibitor ML385 was used to verify the involvement of Nrf2 in the PGG-mediated inhibition of the JAK2/STAT3 cascade. Our results showed that PGG significantly inhibited AGE-induced ROS generation and activated AGE-inhibited Nrf2/HO-1 signaling. Moreover, AGE-induced inflammatory cytokines (IL-1ß and TNF-α) and their signaling through JAK2/STAT3 were blocked by PGG. Furthermore, ML385 suppressed Nrf2/HO-1 signaling, elevated ROS and cytokine production, and activated JAK2/STAT3 cascade were reversed by PGG. These findings indicate that PGG inhibits the JAK2/STAT3 cascade by activating Nrf2/HO-1 signaling.


Assuntos
Anti-Inflamatórios , Produtos Finais de Glicação Avançada/efeitos adversos , Heme Oxigenase-1/metabolismo , Taninos Hidrolisáveis/farmacologia , Inflamação/genética , Janus Quinase 2/metabolismo , Proteínas de Membrana/metabolismo , Células Mesangiais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Animais , Antioxidantes , Citocinas/metabolismo , Inflamação/etiologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo
20.
Materials (Basel) ; 14(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672639

RESUMO

The microstructure and properties of laser welding lap joints with different assembly gap sizes are experimentally investigated. The laser weld joint is composed of γ-austenite and δ-ferrite, and the strip ferrite phase is mainly distributed at the austenite grain boundary. The weld metal presents the austenitic-ferritic (AF) solidification mode. When there is a gap between the two plates, a triangular region composed of similar equiaxed crystals can be found, and the size of the cellular crystals in this region decreases significantly. When the assembly gap size increases from 0.1 mm to 0.4 mm, the weld penetration state of the joint changes from full penetration to semi-penetration, and the surface collapse increases. The excessive size of the gap leads to a decrease in the tensile-shear force and fatigue strength of laser welded joints. In order to ensure that the surface morphology and properties of the welded joint meet the quality standard and requirement, the assembly gap should be less than 0.1mm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA